AQUEOUS SCRUBBING OF NO_X FROM STACK GASES. <u>G. A. Chappell</u>, Esso Research and Engineering Company, Linden, New Jersey, 07036. A bench-scale batch scrubbing unit has been used to screen various solutions for NO_x absorption from synthetic flue gas. The blended gas stream contained 12% CO₂, 3% O₂, 700 ppm NO_x, 8% steam, variable SC₂, and N₂. The mixture, flowing at 3200 cc/min, bubbled through one liter of scrubbing solution maintained at 125°F. The effluent gas was analyzed spectrophotometrically for NO, NO₂ and SO₂. We investigated the effect of NO₂ addition on the sorption of NO by using a flue gas containing 350 ppm each of the two exides. Of the many solutions and slurrics studied, sulfites and amines were the most effective at NO_x absorption. Concentrated ammonium hydroxide (65°F) removed 74% of the NO and 80% of the NO₂ whereas a saturated sodium sulfite solution (125°F) absorbed 16% of the NO and 100% of the NO₂. A slurry of CaSO₃ absorbed 35% of the NO and 66% of the NO₂. The sulfite systems are quite unreactive toward NO in the absence of NO₂; however, the presence of NO has little effect upon the absorption of NO₂. These and other results will be presented and discussed in more detail.